A Python framework to simplify genome simulation with priors

Ariella L. Gladstein ${ }^{1}$, Consuelo D. Quinto-Cortés ${ }^{2}$, Julian L. Pistorius ${ }^{3}$, David Christy ${ }^{4}$, Logan Gantner ${ }^{5}$, August E. Woerner ${ }^{6}$, and Blake L. Joyce ${ }^{3,7}$

${ }^{1}$ Department of Ecology and Evolutionary Biology, University of Arizona, USA, ${ }^{2}$ National Laboratory of Genomics for Biodiversity (LANGEBIO), CINVESTAV, Mexico, ${ }^{3}$ CyVerse, University of Arizona, USA, ${ }^{4}$ Department of Computer Science, University of Arizona, USA, ${ }^{5}$ Graduate Interdisciplinary Program in Applied Mathematics, University of Arizona, USA, ${ }^{6}$ Center for Human Identification, University of North Texas Health Science Center, USA, ${ }^{7}$ BIO5 Institute, University of Arizona, USA.

Availability: Source code, HTC workflow, documentation, and examples are available at https://github.com/agladstein/SimPrily

Introduction

What can you use 1000's - millions of simulations for?

- Approximate Bayesian Computation to infer demographic history

Compute Node
5. One file with parameter values and summary statistics are returned to the submit host.

- Null demographic model to find regions under selection demographic
- Truth datasets for testing software

Features

- Specify demographic model with priors
- Create pseudo array from simulations
- Calculate population genetics statistics
- Run 1000's of simulations with GUI in CyVerse Discovery Environment
- Run millions of simulations with Pegasus workflow on the Open Science Grid

Methods

How to submit jobs to the Open Science Grid:

./submit param_file.txt model_file.csv array_template genetic_map number_jobs

High throughput workflow

